Sample Problem

Using Enthalpies of Formation

Problem

Iron(III) oxide reacts with carbon monoxide to produce elemental iron and carbon dioxide. Determine the enthalpy change of this reaction, using known enthalpies of formation.

$$Fe_2O_{3(s)} + 3CO_{(g)} \to 3CO_{2(g)} + 2Fe_{(s)}$$

What Is Required?

You need to find ΔH° of the given chemical equation, using ΔH°_{f} data.

What Is Given?

From Appendix E, you can obtain the enthalpies of formation.

$$\begin{split} &\Delta H^{\circ}_{\rm f} \text{ of Fe}_2 O_{3(s)} = -824.2 \text{ kJ/mol} \\ &\Delta H^{\circ}_{\rm f} \text{ of CO}_{(g)} = -110.5 \text{ kJ/mol} \\ &\Delta H^{\circ}_{\rm f} \text{ of CO}_{2(g)} = -393.5 \text{ kJ/mol} \\ &\Delta H^{\circ}_{\rm f} \text{ of Fe}_{(s)} = 0 \text{ kJ/mol (by definition)} \end{split}$$

Plan Your Strategy

Multiply each ΔH°_{f} value by its molar coefficient from the balanced chemical equation. Substitute into the following equation, and then solve.

$$\Delta H^{\circ} = \Sigma (n\Delta H^{\circ}_{f} \text{ products}) - \Sigma (n\Delta H^{\circ}_{f} \text{ reactants})$$

Act on Your Strategy

```
\begin{split} \Delta H^\circ &= \Sigma (n\Delta H^\circ_f \ products) - \Sigma (n\Delta H^\circ_f \ reactants) \\ &= [3(\Delta H^\circ_f \ CO_{2(g)}) + 2(\Delta H^\circ_f \ Fe_{(s)})] - [(\Delta H^\circ_f \ Fe_2O_{3(s)}) + 3(\Delta H^\circ_f \ CO_{(g)})] \\ &= [(-393.5 \ kJ/mol) + 2(0 \ kJ/mol)] - [(-824.2 \ kJ/mol) + 3(-110.5 \ kJ/mol)] \\ &= -24.8 \ kJ/mol \\ &\therefore Fe_2O_{3(s)} + 3CO_{(g)} \rightarrow 3CO_{2(g)} + 2Fe_{(s)} \quad \Delta H^\circ = -24.8 \ kJ/mol \end{split}
```

Check Your Solution

A balanced chemical equation was used in the calculation. The number of significant digits is correct. The units are also correct.